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Direct numerical simulations of the flow induced by a circular disk oscillating
sinusoidally along its axis are performed. The aspect ratio (χ = diameter/thickness)
of the disk is 10. The Reynolds number (Re), based on the maximum speed and
the diameter of the disk, is in the range of 50 6 Re 6 800. The Keulegan–Carpenter
number (KC) is in the range of 1 6 KC 6 24. Five flow regimes are observed in
the considered Re–KC space: (I) axisymmetric flow (AS), (II) planar symmetric flow
in the low-KC region (PSL), (III) azimuthally rotating flow in the low-KC region
(ARL), (IV) planar symmetric flow in the high-KC region (PSH) and (V) azimuthally
rotating flow in the high-KC region (ARH). The critical boundaries between different
flow regimes are identified based on the evolutions of the magnitude and direction of
transverse force acting on the disk. For the non-axisymmetric flow regimes, the flow
is one-sided with respect to the axis of the disk and is associated with a non-zero
mean value of the transverse force acting on the disk.
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1. Introduction

Interest in the flow around a circular disk goes back many years. Many experimental
studies (see, e.g. Marshall & Stanton 1931; Willmarth, Hawk & Harvey 1964; Kuo
& Baldwin 1967; Roos & Willmarth 1971; Roberts 1973; Berger, Scholz & Schumm
1990; Fernandes et al. 2007; Zhong & Lee 2012) and numerical calculations (see, e.g.
Michael 1966; Rimon 1969; Rivet et al. 1988; Fabre, Auguste & Magnaudet 2008;
Shenoy & Kleinstreuer 2008; Auguste, Fabre & Magnaudet 2010; Chrust, Bouchet
& Dušek 2010; Shenoy & Kleinstreuer 2010; Yang et al. 2014a, 2015) addressing
this issue have been reported. As a typical case of an axisymmetric body, studies
on circular disks are often conducted and discussed together with another typical
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axisymmetric body, a sphere, which shares some similarities in the transition scenario
(Fabre et al. 2008; Chrust et al. 2010).

The transition scenario in the wake of the uniform flow normal to a circular disk
is dependent on both the Reynolds number and the aspect ratio of the disk. The
aspect ratio of the disk is defined as χ =D/td, where D and td are the diameter and
thickness of the disk, respectively. A value of χ =∞ refers to an infinitely thin disk,
which is sometimes called a ‘flat disk’ in the literature. It has been reported that the
flow is steady and axisymmetric at sufficiently low Reynolds numbers, corresponding
to the ‘trivial state’ (TS), as it has been named by Auguste et al. (2010). The first
bifurcation occurs at the critical value of the Reynolds number, Rec1, resulting in
a reflectionally symmetric flow represented by a pair of steady streamwise vortices
and a steady lift force. This state has been named a ‘steady state’ (SS) by Fabre
et al. (2008) and Meliga, Chomaz & Sipp (2009) and a ‘steady asymmetric state’
by Shenoy & Kleinstreuer (2008). According to direct numerical simulation (DNS)
results for disks with χ = 2, 3, 4, 6 and 10, the relation between the critical Reynolds
number and the aspect ratio of the disk can be described as Rec1 ≈ 116.5(1 + χ−1)

(Fernandes et al. 2007). For a flat disk (χ =∞), a reasonable consensus that the value
of Rec1 is between 115 and 117 has been achieved (Natarajan & Acrivos 1993; Fabre
et al. 2008; Meliga et al. 2009; Chrust et al. 2010). For a disk of χ = 10, Rec1 has
been reported to be 135 by Shenoy & Kleinstreuer (2008) and 129.6 by Chrust et al.
(2010). A value of Rec1 ≈ 159.4 has been reported by Auguste et al. (2010) for a
thicker disk with χ = 3.

A secondary Hopf bifurcation occurs as the Reynolds number increases further. The
new state is characterized as a ‘three-dimensional periodic flow with regular rotation’
(Shenoy & Kleinstreuer 2008). Unlike in the case of the sphere, the lift force of the
disk in this state is azimuthally oscillating. This state has also been referred to as a
‘Yin-Yang’ (YY) state by Auguste et al. (2010), a ‘mixed mode with phase π’ (MMπ)
by Meliga et al. (2009) and ‘reflectional symmetry breaking’ (RSB) by Fabre et al.
(2008). The critical Reynolds number for the secondary bifurcation (Rec2) has been
reported to lie between 121 and 125.6 for a flat disk (χ =∞) (Natarajan & Acrivos
1993; Fabre et al. 2008; Chrust et al. 2010) and between 136.3 and 138.7 (Chrust
et al. 2010) or at approximately 155 (Shenoy & Kleinstreuer 2008) for a disk with
χ = 10.

As the Reynolds number increases still further, depending on the aspect ratio of the
disk, the transition scenarios and the critical Reynolds numbers between different flow
states become more complicated. Auguste et al. (2010) investigated the bifurcations
in the wake of a disk with χ = 3. It was reported that at least four additional
bifurcations are encountered before a chaotic state is reached, namely, the ‘Zig–zig’
(Zz), ‘Knit-Knot’ (KK), ‘Yin–Yang’ (YY) and ‘Zig–Zag’ (ZZ) modes. Chrust et al.
(2010) conducted an extensive parametric study of the transition scenario in the wake
of a disk with χ > 1. A very detailed and systematic picture of the transition scenario
was presented in the two-parameter space of the Reynolds number and the aspect
ratio of the disk. A more detailed review is provided by Ern et al. (2012).

Apart from the studies of the flow around a fixed disk, the instabilities in the wake
and path of a freely falling (or rising) disk under the action of gravity (or buoyancy)
have attracted extensive attention. According to the experimental studies performed by
Zhong & Lee (2012), the wake transition scenarios are similar to those of the flow
patterns behind a fixed disk. The transition from axisymmetry to plane symmetry was
found at Rec1 ≈ 105, while the Hopf bifurcation occurred at Rec2 ≈ 118. Although
such investigations on the first bifurcations in the wake of a fixed disk have indeed
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furthered the understanding of the mechanisms of the oscillatory motion of the freely
moving disk, there is no doubt that the latter case is significantly more complicated.
The problem of freely falling or rising bodies in a fluid at rest is governed by three
control parameters: the geometrical parameter χ , the body-to-fluid density ratio ρ̄
and the Archimedes number Ar. One of the widely accepted propositions is that the
presence of vorticity in the flow is the only source of path instability. However, this
does not mean that the dynamics of the freely moving disk can be considered as
that of a fixed disk. Fernandes et al. (2007) reported a delayed onset of instabilities
for a freely rising disk compared with that of a fixed disk. This finding was later
confirmed by Chrust, Bouchet & Dušek (2014). In other words, the freedom of
the disk has a stabilizing effect on the onset of the primary bifurcation. Moreover,
Auguste, Magnaudet & Fabre (2013) noted that it was essentially incorrect to expect
that the bifurcations for the falling body to closely mirror the wake of the same
disk held fixed in a uniform stream. The dynamics of the wake and path of a freely
moving disk are intrinsically coupled. Therefore, the stability analysis of this type of
problem must consider the body + fluid system as fully coupled (Tchoufag, Fabre &
Magnaudet 2014).

Undoubtedly significant insight into the fluid dynamics of a disk has been achieved
through these numerous experimental and numerical simulations. Nevertheless, there
are still some aspects that are not fully understood and merit further investigation.
With regard to the flow configurations, the steady flow over a fixed circular disk
or a freely falling/rising circular disk in a stationary fluid were considered in the
previous studies. In both of these cases, the flow relative to the disk is only in one
direction, and the wake flow is always behind the disk. By contrast, the oscillatory
flow over a circular cylinder or a circular cylinder oscillating in a quiescent fluid
has been extensively studied (see, e.g. Bearman 1984; Williamson & Govardhan
2008; An, Cheng & Zhao 2011). Unfortunately, to the best of our knowledge, similar
studies have not yet been performed for the circular disk. For a disk oscillating in
a fluid at rest, the disk moves back and forth, accelerates and decelerates. Some
new and interesting phenomena are expected to be revealed. This is the motivation
of the present study, and four questions are to be answered: (i) what is the wake
of the oscillating disk, (ii) how many types of flow regimes exist, (iii) what is the
dependence of the threshold on the oscillating amplitude and Reynolds number and
(iv) what is the connection between the wake instabilities of a fixed disk and those
of an oscillating disk.

With these questions, we start our study by considering the simplest case: an
isolated circular disk that is forced to oscillate sinusoidally along its axis. Here, we
introduce the coordinate system (x, y, z), whose origin is located at the centre of the
disk. The z-axis of the coordinate system is parallel with the axis of the disk. The
axial displacement of the disk is a function of time: zdisk(t)= a sin(2πt/T), where a
is the amplitude of the oscillatory motion, T is the period of oscillation and t is the
time. Therefore, the axial velocity of the disk is taken as uz(t) = Umax cos(2πt/T),
where Umax is the maximum speed of the disk, i.e. Umax = 2πa/T .

It has been reported that the aspect ratio of the disk plays a significant role in
determining the transition process and vortex structure in the wake of a steady flow
(Shenoy & Kleinstreuer 2010). Therefore, the key dimensionless parameters that define
the problem are the Reynolds number (Re), the Keulegan–Carpenter number (KC) and
the disk aspect ratio χ . The respective definitions of Re and KC are given as follows:

Re= UmaxD
ν

, (1.1)
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KC= UmaxT
D
= 2πa

D
, (1.2)

where ν is the kinematic viscosity of the fluid.
It is noteworthy that, according to the study for the transition scenario in the

wake of a fixed disk by Chrust et al. (2015), the supporting structure is one of the
main sources resulting in the discrepancies between the numerical and experimental
results. The flow regimes in the present oscillating case may also be influenced by
the supporting structure. In the present study, we attempted to reveal the fundamental
fluid dynamics of an oscillating circular disk. Therefore, the supporting structure
is not considered. In this case, numerical method is a more appropriate technique
because the very ideal conditions could be achieved easily in numerical simulations.

The DNS method was used to calculate the flow around the disk, and the deforming
mesh technique was employed to simulate the oscillatory motion of the disk. The
ranges of Re and KC considered in the present study are 50 6 Re 6 800 and 1 6
KC 6 24, respectively. The disk aspect ratio considered in this study is 10, which can
be reasonably regarded as representative of a ‘thin’ disk (Chrust et al. 2010). Another
reason for the selection of an aspect ratio of 10 is for convenience in comparing the
obtained results with the DNS results reported by Shenoy & Kleinstreuer (2008).

The remainder of this paper is organized as follows. Details of the numerical
simulations are presented in § 2. The results are described in § 3. Finally, a few
concluding remarks are offered in § 4.

2. Numerical simulations
2.1. Mathematical formulations and numerical methods

We consider a rigid circular disk that is forced to oscillate along its axis in a
Newtonian incompressible fluid at rest. The Cartesian coordinate system (x, y, z) is
used in the present study. If these coordinates are labelled as (x1, x2, x3) and the
velocity component in the xi direction is denoted by ui, where i = 1–3, then the
Navier–Stokes (N–S) equations can be expressed as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=− 1

ρ

∂p
∂xi
+ ν ∂

2ui

∂xj∂xj
, (2.2)

where p is the pressure and ρ is the density of the fluid. For clarity, the velocity
components u1, u2 and u3 are also denoted by ux, uy and uz, respectively.

The N–S equations are discretized using the finite volume method (FVM) based on
the open-source computational fluid dynamics (CFD) code OpenFOAM. OpenFOAM
is primarily applied for solving problems in continuum mechanics. It is built based
on the tensorial approach and object-oriented techniques (Weller et al. 1998). The
pressure-implicit with splitting of operators (PISO) scheme (pisoFoam) is used in
the present study. The spatial schemes used for interpolation, gradient, Laplacian
and divergence calculations are the linear, Gauss linear, Gauss linear corrected and
Gauss linear schemes, respectively. All these schemes were of second order. The
second-order Crank–Nicholson scheme was used for the time integration. Further
details of these schemes are provided in OpenFOAM (2009).
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The non-dimensional force coefficients in three directions, i.e. the x, y and z
directions, are defined as follows:

(Cx,Cy,Cz)= (Fx, Fy, Fz)
1
8ρU2

ref πD2
, (2.3)

where Fx, Fy and Fz are the force components acting on the disk in the x, y and
z directions, respectively, and they are directly calculated by integrating the pressure
and viscous shear stress over the disk surface; in the case of the analysis of the steady
flow over a fixed disk performed for code validation (see § 2.2), the reference speed
(Uref ) is the free stream speed (Us), and in the case of the oscillating disk, Uref is the
maximum speed of the disk (Umax).

The so-called Q-criterion proposed by Hunt, Wray & Moin (1988) and the vorticity
component in the z direction (ωz) are used to identify the vortical structures around
the disk. Q is defined as

Q=− 1
2(‖S‖2 − ‖Ω‖2), (2.4)

where S and Ω denote the strain and the rotation tensor, respectively.

2.2. Code validation
To validate the adopted numerical approach, benchmark calculations of the steady
flow normal to a stationary disk are performed. Following the set-up presented by
Shenoy & Kleinstreuer (2008), the aspect ratio of the disk is χ = 10. A cylindrical
computational domain with a cross-sectional diameter lr is used; see figure 1(a). The
origin of the coordinate system (x, y, z) is located at the centre of the disk, and the
z-axis coincides with the axis of the disk. The distances from the inlet and outlet
boundaries to the centre of the disk are denoted as lu and ld, respectively. On the disk
surface, no-slip and zero normal-pressure-gradient boundary conditions are imposed.
At the inlet boundary, a uniform velocity (0, 0,Us) and zero normal-pressure-gradient
boundary conditions are prescribed. At the outlet boundary, the velocity is set to a
zero normal gradient and the pressure is fixed at zero. At the free stream boundary,
free-slip and zero normal-gradient boundary conditions are applied for the velocity
and pressure, respectively. The topology of the mesh also follows that used in Shenoy
& Kleinstreuer (2008), and the computational domain is discretized with hexahedral
elements; see figure 1(b). In the vicinity of the disk, the grids are finer to better
resolve the steep gradient in this region. To assess the effects of the spatial and
temporal resolutions on the results, three cases with different spatial and temporal
resolutions are considered; see cases S1–S3 in table 1, where n1 denotes the element
size in the wall-normal direction near the disk surface, 1t is the time step used
in the simulations, Res denotes the Reynolds number based on the free stream
velocity (Us) and the disk diameter (D) and Lw denotes the recirculation length,
which is defined as the streamwise distance from the centre of the disk to the
position where the streamwise velocity changes sign from negative to positive. In
the considered Reynolds number region (i.e. Res < Rec1), the flow is steady and
axisymmetric (Auguste et al. 2010). As shown in table 1, only very small variations
are observed in the results for Cz and Lw calculated for the different spatial and
temporal resolutions, i.e. for cases S1–S3. To further assess the effects of the size
of the computational domain on the calculated results, two more cases are conducted
with a reduced computational domain size, see cases S4 and S5 in table 1. The
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FIGURE 1. Stationary disk: (a) computational domain and boundary conditions (not to
scale) and (b) grid structures near the disk surface.

meshes used in cases S3–S5 are designed to be of an equivalent density. As shown
in table 1, a good convergence is observed in the results of Cz and Lw for cases
S3–S5. It is concluded that the effects of the size of the computational domain on
the calculated results are negligible for case S3. Finally, the axial drag coefficient
(Cz) and recirculation length (Lw) obtained for case S3 are in good agreement with
the DNS results reported by Shenoy & Kleinstreuer (2008) and the experimental
measurements reported by Roos & Willmarth (1971); see figure 2.

To validate the capability of the present numerical approach for computing the
unsteady wake flow, numerical simulations are conducted for Reynolds numbers of
Res= 160 and 180. As shown in table 2, the Strouhal number St represents the wake
frequency non-dimensionalized with the free stream velocity (Us) and the diameter of
the disk (D). Similar to the validation studies for the steady cases shown in table 1,
the effects of the grid resolution, time step and computational domain size are also
evaluated. The configurations of cases S1–S5 are kept the same as those shown in
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FIGURE 2. (Colour online) Comparisons of the results for the steady flow normal to a
circular disk: (a) axial drag coefficient (Cz) and (b) recirculation length (Lw).

Domain size Res

Case Elements n1/D 1tUs/D lu/D ld/D lr/D 10 30 50 75 100

S1 107 520 0.02 0.01 5 30 24 4.00 2.15 1.70 1.43 1.28
S2 365 184 0.0133 0.0075 5 30 24 4.02 2.16 1.71 1.44 1.28

Cz S3 860 160 0.01 0.005 5 30 24 4.03 2.16 1.70 1.44 1.28
S4 735 360 0.01 0.005 4 24 18 4.06 2.18 1.72 1.45 1.29
S5 599 040 0.01 0.005 2.5 15 12 4.21 2.25 1.78 1.50 1.34

S1 107 520 0.02 0.01 5 30 24 0.40 0.87 1.24 1.60 1.88
S2 365 184 0.0133 0.0075 5 30 24 0.40 0.88 1.25 1.62 1.90

Lw/D S3 860 160 0.01 0.005 5 30 24 0.41 0.89 1.26 1.63 1.91
S4 735 360 0.01 0.005 4 24 18 0.41 0.89 1.26 1.63 1.91
S5 599 040 0.01 0.005 2.5 15 12 0.41 0.90 1.27 1.64 1.93

TABLE 1. Results for the axial drag coefficient (Cz) and the recirculation length (Lw)
obtained for cases of different configurations for a stationary disk. The values of Cz and
Lw/D are shown in the last five columns.

table 1. It is observed that the results of St in the present converged case S3 agree
well with the results obtained in the literature (Shenoy & Kleinstreuer 2008; Chrust
et al. 2010; Yang et al. 2014c).

Overall, the present numerical approach yields reliable results for the flow over
a circular disk. Moreover, this numerical approach has previously been successfully
applied to calculate the incompressible flow around an oscillating disk (Yang, Tian &
Li 2014b).

2.3. Computational domain and boundary conditions
A spherical computational domain of radius Rdomain is used for the oscillating disk;
see figure 3(a). The origin of the coordinate system is located at the centre of the
computational domain, and the z-axis coincides with the axis of the disk. The mean
position of the disk is at the centre of the computational domain. On the disk surface,
the no-slip boundary condition is imposed for the velocity; the pressure is set to a zero
normal gradient. At the outer boundary, the velocity is set to a zero normal gradient
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Case χ Res St

Present (S1) 10 160 0.118
Present (S2) 10 160 0.115
Present (S3) 10 160 0.114
Present (S4) 10 160 0.115
Present (S5) 10 160 0.120
Present (S1) 10 180 0.120
Present (S2) 10 180 0.117
Present (S3) 10 180 0.116
Present (S4) 10 180 0.116
Present (S5) 10 180 0.122

Shenoy & Kleinstreuer (2008) 10 160 0.113
Shenoy & Kleinstreuer (2008) 10 180 0.113

Chrust et al. (2010) 10 (136.3,138.7) 0.115
Chrust et al. (2010) 10 154.4 0.114
Yang et al. (2014c) 5 152 0.113
Yang et al. (2014c) 5 172 0.113

TABLE 2. Comparisons of the Strouhal number for a stationary disk obtained in
different studies.

and the pressure is fixed at zero. It has been checked carefully that the effects of the
boundary condition at the outer boundary on the calculated results are negligible in the
present configuration. The entire computational domain is discretized with hexahedral
elements, and the grid near the disk surface is of finer resolution to resolve the steep
gradient in this region; see figure 3.

The oscillatory motion of the disk is realized using the deforming mesh method,
in which the topology of the mesh does not change throughout the simulation. The
mesh is updated at each time step by moving the grid points based on the permanent
static mesh with zdisk= 0, which is established at the beginning of the simulation (see
figure 3a as an example). To preserve the validity and quality of the mesh, a grid-
smoothing method is applied, which is described as follows. Let r i(t) represent the
coordinates of point i at time t, and let rdisk(t)= (0, 0, zdisk) represent the displacement
of the disk at time t; then, r i(t) can be determined using the following equation:

r i(t)= r i(0)+ rdisk(t)f ∗. (2.5)

The scaling function f ∗ in equation (2.5) is determined by the distance of the grid
point from the centre of the disk as follows:

f ∗ =


1 if |r i(0)|6 R1

0.5 sin
[
π

( |r i(0)| − R2

R1 − R2
− 0.5

)]
+ 0.5 if R1 < |r i(0)|< R2

0 if |r i(0)|> R2.

(2.6)

Here, the values of R1 and R2 in equation (2.6) are taken to be R1 = 2.5D and
R2 = Rdomain, respectively, where Rdomain is the radius of the spherical computational
domain. Using the scaling function f ∗, a smooth grid deformation can be obtained
between the disk and the outer boundary. Thus, a good mesh quality can always be
maintained during a simulation. Figure 3(b) shows an example of the grid structures
at the maximum amplitude considered in this study, i.e. zdisk = 3.82D at KC= 24.
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FIGURE 3. Oscillating disk: cut-away views of the computational domain and grid
structures (a) at the mean disk position zdisk = 0, (b) at the maximum disk displacement
(zdisk ≈ 3.82D at KC = 24 as an example) and (c) in a detailed zoom of the region near
the disk surface.

2.4. Convergence studies
To assess the effects of the spatial and temporal resolutions on the calculated
results, three cases with different numbers of grid elements and time steps, i.e. cases
O1–O3 in table 3, are considered. For each case, the results for three different flow
configurations, i.e. (Re, KC) = (245, 24.5), (600, 15) and (900, 7.5), are presented.
The parameters CD and CM shown in table 3 are the drag and inertia coefficients,
respectively, which are calculated by splitting the axial force (Fz) into drag and
inertial terms following the Morison equation (Morison et al. 1950), which states that

Fz =−CDρ
π

8
D2uz(t)|uz(t)| −CMρ

π

4
tdD2u̇z(t). (2.7)

In this study, CD and CM were calculated using the least-squares method. As shown
in table 3, for all three considered flow configurations, the results of CD and CM

obtained in cases O2 and O3 agree well with each other, indicating reasonable
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Re= 245 Re= 600 Re= 900
Case Elements n1/D Rdomain T/1t KC= 24.5 KC= 15 KC= 7.5

CD CM CD CM CD CM

O1 117 760 0.0055 20D 5 000 1.48 14.82 1.51 14.07 1.84 11.13
O2 397 440 0.0036 20D 10 000 1.42 17.15 1.44 14.07 1.78 11.08
O3 942 080 0.0027 20D 15 000 1.42 17.15 1.44 13.83 1.76 11.23
O4 457 920 0.0036 30D 10 000 1.43 17.00 1.46 13.87 1.78 11.11

TABLE 3. Results for the drag coefficient (CD) and inertia coefficient (CM) obtained for
cases of different spatial and temporal resolutions for an oscillating disk.

convergence with increasing spatial and temporal resolutions. The effects of the size
of the computational domain on the calculated results are evaluated by considering a
larger domain of radius Rdomain = 30D; see case O4 in table 3. Case O4 corresponds
to a similar spatial resolution and the same time step in case O2. The results for CD

and CM obtained in case O4 agree well with those in cases O2 and O3, indicating
that a computational domain of radius Rdomain = 20D is sufficient to eliminate the
effects of the outer boundary on the calculated results.

Moreover, the time traces of Cz for the three considered (Re,KC) configurations are
plotted against zdisk in figure 4. Good consistency is found among the results of cases
O2–O4; this again demonstrates that the effects of the spatial and temporal resolutions
and of the size of the computational domain on the calculated results are negligible in
the present study. In the following, all reported simulations are performed using the
set-up used in case O2, i.e. with 397 440 grid elements, a time step of T/10000 and
a computational domain of radius 20D.

3. Results and discussion

According to the DNS studies performed by Shenoy & Kleinstreuer (2008)
concerning the uniform flow normal to a circular disk of χ = 10, the flow is steady
and axisymmetric about the axis of the disk when Re< 135. As the Reynolds number
increases, regular bifurcation with a loss of azimuthal symmetry occurs. Similarly,
for the oscillating disk considered in the present study, non-axisymmetric bifurcation
may occur as Re and KC vary. Here, the flow regimes around a circular disk of
χ = 10 are investigated in the considered Re–KC space, i.e. for 50 6 Re 6 800 and
1 6 KC 6 24.

Numerical simulations were performed for 151 pairs of Re and KC values
represented by solid dots in figure 5. Preliminary inspection on the calculated
flow field indicates that there are at least three types of flow regimes in the
considered Re–KC space, i.e., one axisymmetric flow region in the middle and
two non-axisymmetric flow regions in the low- and high-KC regions. It is noteworthy
that the onset of non-axisymmetry is not always clear cut. The magnitude of the
transverse force acting on the disk is closely related to the level of non-axisymmetry
of the flow. Here, the magnitude of the transverse force coefficient is calculated as
Cxy =

√
C2

x +C2
y . Close to the threshold of the axisymmetric and non-axisymmetric

regimes, any perturbation is either exponentially amplified or damped. Therefore,
the accurate threshold is determined by linear interpolation of the growth rate of
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FIGURE 4. (Colour online) Axial drag coefficient (Cz) with respect to the position of the
disk (zdisk) at (a) Re= 245 and KC= 24.5, (b) Re= 600 and KC= 15 and (c) Re= 900
and KC= 7.5.

Cxy. The details of the procedures used to determine the critical value of Re and
KC corresponding to the axisymmetric and non-axisymmetric bifurcations are given
in the Appendix. The two solid lines in figure 5 represent the threshold between
axisymmetric and non-axisymmetric regimes. Further careful examination reveals
that the non-axisymmetric flow begins to rotate around the axis of the disk as the
Reynolds number increases. The boundary between the rotating and non-rotating flow
regimes is identified by the dashed lines in figure 5. Finally, five flow regimes in the
considered Re–KC space are revealed here: (I) axisymmetric flow (AS), (II) planar
symmetric flow in the low-KC region (PSL), (III) azimuthally rotating flow in the
low-KC region (ARL), (IV) planar symmetric flow in the high-KC region (PSH) and
(V) azimuthally rotating flow in the high-KC region (ARH). In the following, we
select one example case from each flow regime and present the corresponding force
coefficients and flow visualizations.

3.1. Regime I: axisymmetric flow (AS)
Figure 6 shows the time traces of the force coefficients for the AS regime, where
Re= 600 and KC = 15. As shown, a periodic variation in Cz is observed, indicating
a well-developed flow. However, the transverse force coefficients Cx and Cy are zero.
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FIGURE 5. (Colour online) The critical boundaries between different flow regimes in Re–
KC space.
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FIGURE 6. (Colour online) Time traces of the force coefficients Cx, Cy and Cz of the disk
over 5 oscillation cycles in the AS regime, where Re= 600 and KC= 15.

Figure 7 shows the three-dimensional vortical structures identified based on the
Q-criterion for Re= 600 and KC = 15 in the AS regime. As shown in figure 7, the
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FIGURE 7. (Colour online) Vortical structures identified based on the Q-criterion during
one oscillation cycle in the AS regime, where Re= 600 and KC= 15.

flow is symmetric about the axis of the disk throughout the oscillation cycle. In
the presented case, circular vortex rings are repeatedly generated with the periodic
oscillations of the disk (see movie 1 of the online supplementary movies available
at https://doi.org/10.1017/jfm.2016.800). This vortex shedding results in oscillations
in the time traces of Cz at higher frequencies. As mentioned previously, the critical
Reynolds number for the non-axisymmetric bifurcation of the uniform flow normal
to a circular disk with χ = 10 has been reported to be Rec1 ≈ 135 (Shenoy &
Kleinstreuer 2008) and Rec1 ≈ 129.6 (Chrust et al. 2010). Although the Reynolds
number in the case depicted in figure 7 is 600, which is significantly higher than
the reported Rec1 values, the flow in this oscillating case is still axisymmetric. One
may argue that the Reynolds number defined for the oscillating case considered in
this study is based on the maximum velocity of the disk [Umax, see equation (1.1)],
thereby resulting in a nominally higher Reynolds number. However, if we calculate
an average Reynolds number based on the average magnitude of the velocity of
the oscillating disk, then this average Reynolds number is Reave = 382, which is
still significantly higher than the reported values of Rec1. This finding implies the
existence of fundamental differences in fluid dynamics between a unidirectional flow
and an oscillatory flow. Notably, the exactly circular vortical rings shown in figure 7
have not been observed in the wake of the uniform flow normal to a circular disk.
This is because, for the uniform flow normal to a disk, the critical Reynolds number
for the onset of vortex shedding is higher than the critical Reynolds number for
non-axisymmetric bifurcation.

3.2. Regime II: planar symmetric flow in the low-KC region (PSL)
Figure 8 shows the force coefficient results for the PSL regime, where Re= 411 and
KC = 2.57. As shown in figure 8(a), the values of Cx and Cy are comparable to the
value of Cz. The time traces of the force coefficients are periodic; however, the periods
of Cx and Cy are one half of the period of Cz. This finding indicates that the transverse
force oscillates twice during one oscillation cycle. It is evident that the noticeable
transverse force acting on the disk arises because the flow surrounding the disk is
no longer axisymmetric.

The vortical structures identified based on the Q-criterion for Re = 411 and
KC = 2.57 in the PSL regime are shown in figure 9. As shown in figure 9, the
flow around the disk in the PSL regime appears with a planar symmetric pattern
rather than with an axisymmetric pattern. As the disk oscillates, vortex shedding
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FIGURE 8. (Colour online) Force coefficient results for the disk over 5 oscillation cycles
in the PSL regime, where Re= 411 and KC= 2.57: (a) time traces of Cx, Cy and Cz and
(b) a phase-space plot of Cx and Cy.

initially begins along one side of the disk edge, and then, a crescent-moon-shaped
vortex is generated, eventually resulting in a non-axisymmetric flow. Figure 9 shows
that non-axisymmetric vortex shedding occurs twice during one oscillation cycle;
accordingly, the transverse force coefficients Cx and Cy also oscillate twice in one
cycle. A more detailed animation of the vortex shedding process has been included
in the online supplementary material (movie 2).

Figure 8(b) shows the phase-space plot of the Cx and Cy time traces shown in
figure 8(a). The transverse force acting on the disk appears to oscillate back and
forth along a fixed orientation, indicating that the flow is indeed planar symmetric
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FIGURE 9. (Colour online) Vortical structures identified based on the Q-criterion during
one oscillation cycle for the PSL regime, where Re= 411 and KC= 2.57.
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FIGURE 10. (Colour online) Contours of the axial vorticity (ωz) on various z planes for
the PSL regime, where Re = 411, KC = 2.57 and zdisk = 0. The circle is the projection
of the disk. Positive and negative values of ωz are represented by solid and dashed lines,
respectively.

and that the direction of the transverse force lies within the symmetry plane. The
orientation of the symmetry plane is selected randomly. As shown in figure 10, the
axial vorticity (ωz) contour plots on several z planes again demonstrate that the flow is
planar symmetric. The present planar symmetric flow recalls the planar symmetric (or
reflectionally symmetric) modes of the uniform flow normal to a circular disk at low
Reynolds numbers, such as the SS (Fabre et al. 2008), ‘standing wave’ (SW) (Meliga
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et al. 2009) and Zz (Auguste et al. 2010) modes. Notably, the planar symmetric flow
is one-sided with respect to the disk axis; see the flow observations in figures 9 and 10.
This is because the vortex shedding locations on the two sides of the disk are always
with the same orientation; see figure 9. The resulting mean value of the transverse
force acting on the disk is non-zero; see figure 8(b). For the uniform flow normal to
a circular disk, a non-zero mean transverse force has also been observed in the SS
and Zz modes.

Because a similar planar symmetric flow regime is observed in the high-KC region
(see § 3.4), the present flow regime is referred to as the regime of planar symmetric
flow in the low-KC region (PSL).

3.3. Regime III: azimuthally rotating flow in the low-KC region (ARL)
Figure 11 shows the force coefficient results for the ARL regime, where Re = 800
and KC = 2.5. Compared with the time traces of the force coefficients in the PSL
regime (see figure 8a), the time traces of the force coefficients in the ARL regime
(see figure 11a) are similar overall except for the slight variation in the envelopes of
Cx and Cy. Figure 11(b) shows the phase-space plot of Cx and Cy over 64 oscillation
cycles. A very slow rotation is observed in the transverse force. The arrow in
figure 11(b) indicates the direction of rotation of the transverse force. It appears that
the flow rotates slowly as the disk passes through successive oscillations. Figure 12
shows the evolution of the axial vorticity (ωz) contour on the plane z/D = 1 when
zdisk = 0 with a time interval of 13T . It is observed that the flow is continuously
rotating about the axis of the disk.

The vortical structures identified based on the Q-criterion for Re = 800 and
KC = 2.5 in the ARL regime are shown in figure 13 and the online supplementary
material (movie 3). Although the rotational motion of the flow is very slow, the
three-dimensional vortical structures in the ARL regime are more complicated than
those in the PSL regime; see figure 9. For the case of the flow normal to a circular
disk, the flow begins to rotate about the axis of the disk after the secondary Hopf
bifurcation. The planar symmetry observed in the previous SS mode no longer holds.
The flow exists in a YY state instead; see figure 5 in Shenoy & Kleinstreuer (2008).
However, the ‘Yin-Yang’ mode observed in the uniform flow normal to a circular
disk is not observed in the rotating flow considered here. As shown in figure 12,
the instantaneous rotating flow is approximately planar symmetric, as observed in the
PSL regime; see figure 10. This implies that the planar symmetric nature of the flow
in the PSL regime is inherited in the ARL regime. Therefore, similar to the flow in
the PSL regime, the flow in the ARL regime is also one-sided with respect to the
disk axis, and this feature is again associated with a non-zero mean transverse force
(see figure 11b).

Because a similar azimuthal rotating flow regime is observed in the high-KC region
(see § 3.5), the present flow regime is referred to as the regime of azimuthal rotating
flow in the low-KC region (ARL).

3.4. Regime IV: planar symmetric flow in the high-KC region (PSH)
Figure 14 shows the force coefficient results for the PSH regime, where Re = 500
and KC = 20. As shown in figure 14(a), the values of Cx and Cy are comparable to
the value of Cz, indicating a non-axisymmetric flow. Similar to the PSL regime (see
figure 8a), the time traces of the force coefficients are periodic and the periods of Cx
and Cy are one half of the period of Cz. A high-frequency fluctuation is evident in
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FIGURE 11. (Colour online) Force coefficient results for the disk in the ARL regime,
where Re= 800 and KC= 2.5: (a) time traces of Cx, Cy and Cz over 5 oscillation cycles
and (b) a phase-space plot of Cx and Cy over 64 oscillation cycles.

Cz. This is because the vortex shedding along the disk occurs more frequently in this
high-KC case than that in low-KC cases.

Figure 14(b) shows the phase-space plot of Cx and Cy for Re= 500 and KC= 20 in
the PSH regime. As observed in the PSL regime (see figure 8b), the transverse force
acting on the disk in the PSH regime has a fixed orientation and a non-zero mean
value, indicating a one-sided planar symmetric flow. The transverse force acting on
the disk oscillates within the plane of symmetry.

The vortical structures identified based on the Q-criterion for the case with Re=500
and KC = 20 in the PSH regime are shown in figure 15. For the cases at high KC,
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FIGURE 12. (Colour online) Evolution of the axial vorticity ωz on the z/D= 1 plane for
the ARL regime, where Re = 800, KC = 2.5 and zdisk = 0. The circle is the projection
of the disk. Positive and negative values of ωz are represented by solid and dashed lines,
respectively.
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FIGURE 13. (Colour online) Vortical structures identified based on the Q-criterion during
one oscillation cycle for the ARL regime, where Re= 800 and KC= 2.5.

the disk travels a farther distance and the vortical structures behind the disk are more
adequately developed. Therefore, apparent hairpin vortices are observed in figure 15.
However, the vortices are shed in a fixed azimuthal direction with respect to the disk,
unlike the double-sided vortex shedding mode observed in the ‘standing wave’ (SW)
mode for the flow normal to a circular disk; see figure 8 in Shenoy & Kleinstreuer
(2008). Figure 16 shows the contours of the axial vorticity (ωz) on various z planes
for the case of Re= 500, KC= 20 and zdisk = 0. The findings again indicate that the
flow is planar symmetric. A more detailed animation of the vortex shedding process
has been included in the online supplementary material (movie 4). In consideration of
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FIGURE 14. (Colour online) Force coefficient results for the disk over 5 oscillation cycles
in the PSH regime, where Re= 500 and KC= 20: (a) time traces of Cx, Cy and Cz and
(b) a phase-space plot of Cx and Cy.

the planar symmetric flow regime observed in the low-KC region (the PSL regime), as
presented in § 3.2, the present regime is referred to as the regime of planar symmetric
flow in the high-KC region (PSH).

3.5. Regime V: azimuthally rotating flow in the high-KC region (ARH)
Figure 17 shows the force coefficient results for the ARH regime, where Re = 600
and KC = 24. As shown in figure 17(a), Cz varies periodically, whereas Cx and Cy
exhibit a slow variation in magnitude. The phase-space plot of Cx and Cy shown in
figure 17(b) indicates a rotational motion of the flow. Compared with the rotational
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FIGURE 15. (Colour online) Vortical structures identified based on the Q-criterion during
one oscillation cycle for the PSH regime, where Re= 500 and KC= 20.
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FIGURE 16. (Colour online) Contours of the axial vorticity (ωz) on various z planes for
the PSH regime, where Re= 500, KC = 20 and zdisk = 0. The circle is the projection of
the disk. Positive and negative values of ωz are represented by solid and dashed lines,
respectively.

motion observed in the ARL regime (see figure 11b), the rotational motion seen in this
case is much faster. Figure 18 shows the evolution of the axial vorticity (ωz) contours

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.800
Downloaded from https:/www.cambridge.org/core. Shanghai JiaoTong University, on 13 Jan 2017 at 07:47:15, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.800
https:/www.cambridge.org/core


Flow around an oscillating circular disk 1139

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

 0.3

10 2 3 4 5

0 0.1 0.2–0.1–0.2

Rotating direction

–1

0

1

2

3

–2

(a)

(b)

FIGURE 17. (Colour online) Force coefficient results for the disk in the ARH regime,
where Re= 600 and KC= 24: (a) time traces of Cx, Cy and Cz over 5 oscillation cycles
and (b) a phase-space plot of Cx and Cy over 12 oscillation cycles.

on the z/D= 4 plane when zdisk= 0 with a time interval of 2T . It is observed that the
flow is continuously rotating about the axis of the disk.

Figure 19 shows the variations in the vortical structures identified based on the
Q-criterion during one oscillation cycle for Re= 600 and KC= 24 in the ARH regime.
The observed flow structures are more disordered than those in the PSH regime; see
figure 15 and the online supplementary material (movie 5). This is because the
Reynolds number in the ARH regime is higher than that in the PSH regime. Hairpin
vortical structures are clearly observed in figure 19, as in the wake of the uniform
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FIGURE 18. (Colour online) Evolution of the axial vorticity ωz on the plane z/D= 4 for
the ARH regime, where Re= 600, KC= 24 and zdisk = 0. The circle is the projection of
the disk. Positive and negative values of ωz are represented by solid and dashed lines,
respectively.
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FIGURE 19. (Colour online) Vortical structures identified based on the Q-criterion during
one oscillation cycle for the ARH regime, where Re= 600 and KC= 24.

flow normal to a disk. It is again observed that the vortical structures are one-sided
with respect to the axis of the disk and that the mean transverse force acting on
the disk is non-zero; see figure 17(b). In consideration of the azimuthal rotating
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flow regime observed in the low-KC region (the ARL regime), as discussed in § 3.3,
the present regime is referred to as the regime of azimuthally rotating flow in the
high-KC region (ARH).

3.6. Discussion on the steady and oscillatory flow regimes
Recalling the bifurcation scenarios in the wake of the uniform flow normal to a
thin disk (see § 1), several flow regimes are revealed successively as Re increases:
‘steady axisymmetric state’ (Auguste et al. 2010), ‘steady asymmetric state’ Shenoy
& Kleinstreuer (2008), ‘reflectional symmetry breaking’ (Fabre et al. 2008) and
later some more complicated states depending on the aspect ratio of the disk. It is
noted that all these states are used for describing the ‘steady- flow’ situation with a
constant Re. For the oscillating disk case, the ‘steady-flow’ situation is never held,
instead, the actual Reynolds number increases and decreases as the disk oscillates.
The saturated ‘steady-flow’ state at a particular Re is not achievable in the oscillating
case. Moreover, compared with the ‘steady-flow’ case, the oscillating disk moves
back and forth periodically, the disk may go into its own wake. However, it does not
mean that the oscillating disk case is not comparable to the ‘steady-flow’ case. A
sufficiently large KC of an oscillating disk provides a large distance for the evolution
of wake flow, therefore giving us an opportunity to catch some scenario fragments
which are similar to those ‘steady-flow’ states.

In this study, the range of KC is up to 24. At the lower part of figure 5, the regimes
PSL and ARL are in the range of 2.5 < KC < 7, approximately, corresponding to
an oscillatory amplitude of 0.4D < a < 1.4D. This amplitude is too small to have
a developed wake flow, as confirmed in figures 9 and 13 and movies 2 and 3 in
the online supplementary material. At the upper part of figure 5, the value of KC
in the regimes PSH and ARH is up to 24, corresponding to an oscillatory amplitude
of a≈ 3.82D. This distance allows a wake evolution as that in the ‘steady-flow’ case.
As shown in the case of Re = 500 and KC = 20 (see figure 15), the flow is planar
symmetric as described in § 3.4. At the topmost and lowest locations (see the pictures
at t = 2T/8 and 6T/8 respectively in figure 15), the actual instantaneous Reynolds
number is very small. Therefore, the toroidal vortex is generated approximately. This
could be interpreted as a co-existence of different ‘steady-flow’ states in the oscillating
disk case, see also movie 4 in the online supplementary material. For the case of Re=
600 and KC = 24 (see figure 19), the increase in Reynolds number results in a new
regime corresponding to the ‘reflectional symmetry breaking state’ in the ‘steady-flow’
case (Fabre et al. 2008).

It appears that there are some connections between the oscillating disk at a large
KC and the ‘steady-flow’ case. However, it must be kept in mind that the oscillating
disk case presented here are intrinsically different with the ‘steady-flow’ situation. In
other words, the KC = 24 is still too small to be considered as a ‘sufficiently large’
KC at which those bifurcations in the ‘steady-flow’ case could be observed in one
oscillating cycle.

4. Concluding remarks
The flow around an oscillating circular disk was investigated using the DNS

approach. The disk was forced to oscillate sinusoidally along its axis. The aspect
ratio (diameter/thickness) of the disk was 10. The ranges considered for the Reynolds
number (Re) and the Keulegan–Carpenter number (KC) were 50 6 Re 6 800 and
1 6 KC 6 24, respectively. In the considered Re–KC space, one axisymmetric
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flow regime and two non-axisymmetric flow regimes were identified. In each
non-axisymmetric flow regime, the flow was planar symmetric at lower Reynolds
numbers and began to rotate about the axis of the disk as the Reynolds number
increased. Therefore, five flow regimes were identified: (I) axisymmetric flow (AS),
(II) planar symmetric flow in the low-KC region (PSL), (III) azimuthally rotating
flow in the low-KC region (ARL), (IV) planar symmetric flow in the high-KC
region (PSH) and (V) azimuthally rotating flow in the high-KC region (ARH). In the
non-axisymmetric flow regimes, the flow around the disk was found to be one-sided
with respect to the axis of the disk and associated with a non-zero mean value of
the transverse force acting on the disk.

It should be noted that the critical boundaries between the different flow regimes
in the Re–KC space were determined based on a limited number of numerical
simulations. More accurate boundaries could be obtained through more extensive
numerical simulations. Because only one disk aspect ratio, namely, χ = 10, was
considered in this study, further research is planned to study the effects of the aspect
ratio on the flow regimes and the critical boundaries between different flow regimes.
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Appendix

This appendix provides additional information of the procedures used to determine
the accurate critical Re and KC numbers for the axisymmetric and non-axisymmetric
bifurcations. The threshold is determined roughly based on the extensive simulations
at various Re and KC as indicated by the solid dots in figure 5. It is observed that
the threshold lays between the axisymmetric case (Re, KC) = (300, 2.5) and the
non-axisymmetric case (Re,KC)= (300, 3). Now we use a slightly perturbed flow as
the initial condition for the case (Re, KC) = (300, 3). As shown in figure 20(a), a
growth of the amplitude of the transverse force coefficient Cxy is observed. By fitting
the envelope of the time traces of Cxy to an exponential function of time, a growth
rate of 2.2542 (see figure 20c) is determined (Ghidersa & Dus̆ek 2000; Bohorquez
et al. 2011). Similarly, the case of (Re, KC) = (300, 2.5) is conducted with the
solution for the case of (Re, KC) = (300, 3) as an initial condition. Then, a decay
of the amplitude of Cxy is observed and the decay rate is determined to be −0.0330
(see figure 20b,d). By linear interpolation of the amplification rates, the threshold
is obtained at (Re, KC) = (300, 2.56). Similar procedures are used to determine to
the accurate threshold at other locations. In this study, 22 sets of simulations are
performed and the determined critical Re and KC numbers are shown in table 4.
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FIGURE 20. (Colour online) Determination of the growth/decay rates of the amplitude
of Cxy for the cases based on a perturbed initial condition. The time traces of Cxy for
the cases of (a) (Re, KC) = (300, 3) and (b) (Re, KC) = (300, 2.5), (c) and (d) the
corresponding exponential fit of the envelop of Cxy.

(Re,KC) (Re,KC) (Re,KC) (Re,KC) (Re,KC) (Re,KC)

(178.61, 5) (200, 8.40) (300, 5.63) (400, 4.70) (500, 6.01) (600, 5.58)
(700, 4.96) (800, 4.49) (200, 3.91) (300, 2.56) (400, 2.07) (500, 2.01)
(600, 1.99) (700, 1.41) (800, 1.00) (300, 22.65) (400, 13.3) (500, 15.79)

(600, 19.28) (700, 19.29) (800, 19.37) (284.12, 24)

TABLE 4. Critical Re and KC numbers for the axisymmetric and non-axisymmetric
bifurcations.
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