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Direct numerical simulations are performed for the uniform flow around an inclined
circular disk. The diameter–thickness aspect ratio (χ =D/td) of the disk is 50 and the
inclination angle (α) is considered over the range of 0◦6α6 80◦, where α= 0◦ refers
to the condition where the flow is normal to the disk. The Reynolds number (Re),
based on the short axis of projection in the streamwise direction, is defined as Re=
U∞D cos α/ν, where U∞ is the velocity of the flow and ν is the kinematic viscosity.
Re is investigated over the range of 50 6Re6 300. In the considered Re–α parametric
space, five states are observed and denoted as: (I) steady state (SS); (II) periodic state
(PS); (III) periodic state with a low frequency modulation (PSL); (IV) quasi-periodic
state (QP) and (V) chaotic state (CS). Both Re and α affect the bifurcation mechanism.
The bifurcating sequence occurring at α= 0◦ is generally observed over the whole Re–
α space, although it is advanced at small α and delayed at large α. The advancement
of thresholds for different states is due to the effects introduced by inclination, which
tend to select the plane of symmetry for the wake in order to regulate the wake and
intensify some flow features. Nevertheless, the bifurcations are still in the dominant
position when leading a state without stable symmetry, i.e. the planar symmetry could
not be recovered by small α. These phenomena are further discussed with respect to
the vortex shedding patterns behind the disk. Furthermore, for any fixed disk, the wake
behaviour is only associated with that found in the steady vertical state of a freely
falling disk. The fully coupled fluid–body system is fundamentally different from the
fixed cases.

Key words: bifurcation, vortex instability, wakes

1. Introduction
Flows past two prototypical axisymmetric geometries, spheres and circular disks,

have been extensively investigated in the literature. It is well known that the wake
of these simple bodies experiences complicated transition scenarios from steady state
to chaotic state with a corresponding increase in the Reynolds number. For a sphere,

† Email address for correspondence: tianxinliang@sjtu.edu.cn
‡ These authors contributed equally to this work.
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a consensus on its transition scenarios has been obtained via extensive numerical
and experimental investigations (see, e.g. Natarajan & Acrivos 1993; Johnson &
Patel 1999; Tomboulides & Orszag 2000). In the case of the same problem for a
circular disk, although some similar flow characteristics are presented (Fabre, Auguste
& Magnaudet 2008), significant variability in the results has been reported. Some
experimental studies (see, e.g. Marshall & Stanton 1931; Willmarth, Hawk & Harvey
1964; Kuo & Baldwin 1967; Roos & Willmarth 1971; Roberts 1973; Berger, Scholz
& Schumm 1990; Fernandes et al. 2007; Zhong & Lee 2012) and numerical studies
(see, e.g. Michael 1966; Rimon 1969; Rivet et al. 1988; Fabre et al. 2008; Shenoy
& Kleinstreuer 2008; Auguste, Fabre & Magnaudet 2010; Chrust, Bouchet & Dušek
2010; Shenoy & Kleinstreuer 2010; Yang et al. 2014a, 2015) have investigated the
case of a circular disk. The transition of the wake behind a fixed circular disk normal
to the uniform flow is determined by two key parameters, the Reynolds number (Re)
and the aspect ratio (χ ) of the disk. According to the previous results, the transition
scenarios around circular disks involve several stages as follows.

When the Reynolds number is sufficiently low, the flow is in an axisymmetric and
steady state (Shenoy & Kleinstreuer 2008). The first bifurcation is observed for all
considered disks, e.g. a flat disk (corresponding to an infinitely thin disk of χ =∞)
investigated by Natarajan & Acrivos (1993), Fabre et al. (2008) and Meliga, Chomaz
& Sipp (2009) and disks of non-zero thickness, considered by Fernandes et al. (2007)
(χ = 2, 3, 4, 6 and 10), Shenoy & Kleinstreuer (2008) (χ = 10) and Auguste et al.
(2010) (χ = 3). The first bifurcation is regular and occurs at a critical Reynolds
number of Rec1, giving rise to a steady flow of reflectional symmetry. The breaking
of axisymmetry results in a pair of steady streamwise vortices and a steady lift force
in the symmetric plane which has an arbitrary orientation determined by the initial
conditions (Chrust et al. 2010). This state is called the ‘steady state’ (SS) (Fabre et al.
2008; Meliga et al. 2009) or ‘steady asymmetric’ state (Shenoy & Kleinstreuer 2008).
The value of Rec1 is a monotonically decreasing function of χ as 1+χ−1 (Fernandes
et al. 2007). For flat disks (χ =∞), a reasonable consensus has been reached for the
value of Rec1 between 115 and 117 (see, e.g. Natarajan & Acrivos 1993; Fabre et al.
2008; Meliga et al. 2009; Chrust et al. 2010). For a disk of χ = 10, Rec1 is found to
be 135 (Shenoy & Kleinstreuer 2008) and 129.6 (Chrust et al. 2010). For a thicker
disk of χ = 3, Rec1 is reported to be approximately 159.4.

While a steady state with planar symmetry is common to all of these cases, for
the second bifurcation, which is always of Hopf type, the transition scenarios are
very different. For a disk of χ = 10, the secondary Hopf bifurcation leads to a
state featured by ‘three-dimensional periodical flow with regular rotation’ (Shenoy
& Kleinstreuer 2008). The periodic lift force oscillates around a non-zero mean
value and the oscillations are perpendicular to the plane selected by the primary
bifurcation, resulting in a loss of reflectional symmetry. This state is also referred
to as ‘reflectional symmetry breaking’ (RSB) (Fabre et al. 2008), ‘mixed mode with
phase π’ (MMπ) (Meliga et al. 2009) and ‘Yin–Yang’ (YY) (Auguste et al. 2010).
The critical Reynolds number for the Hopf bifurcation, Rec2, is a function of 1+ χ−1

as well (Fernandes et al. 2007). Rec2 has been reported to be between 121 and 125.6
for a flat disk (see, e.g. Natarajan & Acrivos 1993; Fabre et al. 2008; Meliga et al.
2009; Chrust et al. 2010), and between 136.3 and 138.7 (Chrust et al. 2010) or
approximately 155 (Shenoy & Kleinstreuer 2008) for χ = 10. The transition scenario
of a flat disk, in which the RSB mode remains as the secondary bifurcation, holds
up for thin bodies with χ > 4 (Chrust et al. 2010). Alternatively, for a thicker disk
with χ = 3, the ‘Yin–Yang’ state is the fourth bifurcation because two exclusive
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Flow around an inclined circular disk 689

bifurcations, namely the ‘zig-zig’ and ‘knit-knot’ modes, are encountered at the
second and third thresholds respectively (Auguste et al. 2010). The ‘zig-zig’ mode
is characterized by reflectional symmetry with a periodic lift force oscillating around
a non-zero mean, equal to the ‘reflectional symmetry preserving’ (RSP) mode. The
‘knit-knot’ mode is characterized by net non-zero helicity.

As the Reynolds number increases further, the amplitude of the oscillations in the
RSB mode increases and the non-zero mean value recesses gradually until reflectional
symmetry is recovered. This state is referred to as the ‘standing wave’ (SW) (see, e.g.
Fabre et al. 2008; Meliga et al. 2009), ‘unsteady with planar symmetry and zero lift
force’ (Shenoy & Kleinstreuer 2008) or ‘zig-zag’ (Auguste et al. 2010) mode. The
threshold of this third bifurcation for a flat disk, Rec3, is found to be approximately
140 (Fabre et al. 2008), 143 (Meliga et al. 2009) and between 142 and 143 (Chrust
et al. 2010). In the case of a disk with χ = 3, the critical Reynolds number of this
fifth bifurcation is found to be approximately 215 (Auguste et al. 2010).

Before the flow eventually develops into a fully chaotic state, a quasi-periodic (or
pre-chaotic) mode is formed, which is characterized by the persistence of a reflectional
symmetry plane and emergence of a secondary frequency close to one third of the
leading frequency of the previous regimes (Auguste et al. 2010; Chrust et al. 2010).
Unlike other thresholds that can be determined precisely, the exact limit between quasi-
periodicity and chaos is difficult to determine.

A comprehensive Re–χ parametric study of the transition scenarios of circular disks
and oblate spheroids has been conducted (Chrust et al. 2010). It is reported that a thin
oblate spheroid (χ > 10) also presents a flat-disk-like scenario so that it is reasonable
to believe the physics of flow around thin bodies at low Reynolds number are similar,
independently of their geometries.

The fluid dynamics of a fixed circular disk has been exhaustively presented in the
literature. Nevertheless, freely moving bodies are more common in realistic scenarios,
e.g. falling coins in water and dead leaves in air. Extensive investigations have been
conducted on the wake instabilities and paths of a freely falling (or rising) disk
(see, e.g. Willmarth et al. 1964; Field et al. 1997; Zhong & Lee 2012; Auguste,
Magnaudet & Fabre 2013; Chrust, Bouchet & Dušek 2013) and spheres or oblate
spheroids (see, e.g. Jenny, Dušek & Bouchet 2004; Horowitz & Williamson 2010;
Zhou, Chrust & Dušek 2017). For disks, this problem depends on three control
parameters, the disk aspect ratio χ , the body-to-fluid ratio ρ̄ (also denoted as the
dimensionless moment inertia I∗, see, e.g. Willmarth et al. 1964; Field et al. 1997;
Zhong & Lee 2012) and the Archimedes number Ar (Reynolds number based on
gravitational velocity, which is also defined as the Galileo number G, see, e.g. Chrust
et al. 2013). Hence, for a disk of given aspect ratio, inertial and viscous effects
together control the transitional process. A preliminary transition map of a freely
falling thin circular disk is given by Field et al. (1997). When the Reynolds number
is low, i.e. viscous effects are significant, the motion of the falling disk is found to
be steady and vertical, also denoted as the ‘straight vertical’ (SV) mode (Auguste
et al. 2013). At higher Reynolds numbers, a periodic fluttering state, corresponding
to the ‘zig-zag’ (ZZ) mode, is observed for disks of small ρ̄, while a tumbling state,
i.e. ‘autorotation’ (AR), is found for large ρ̄. Between these states is an intermediate
chaotic state, characterized by a random switching between ZZ and AR modes. The
paths in these states are all of planar symmetry. More recently, some regimes with
small path deviations between SV and ZZ have been reported (Auguste et al. 2013)
along with other regimes with three-dimensional trajectories (Zhong, Chen & Lee
2011). Further information could be found in a detailed review (Ern et al. 2012).
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Flow

FIGURE 1. Schematic representation of the uniform flow past an inclined circular disk.
The disk parameters and α are demonstrated. The coordinate system is defined as well,
where the direction of the x-axis coincides with the direction of the incoming flow.

Regretfully, connections between wake instability of a fixed disk normal to flow and
that of freely falling one are limited (Fernandes et al. 2007; Auguste et al. 2013).
However, a freely moving disk is usually exposed to the flow at an inclined state,
which leads us to expect the study on flow around a fixed inclined disk might help
us better understand its physics.

Figure 1 shows a schematic diagram of the uniform flow around a fixed inclined
disk. The pioneering work on this topic is the experimental study by Calvert (1967), in
which the results are obtained from smoke visualization experiments in an open-return
wind tunnel. During the experiments, α is up to 50◦, and Re is in the range of
3500–5000. Vortex shedding of increasing frequency with increasing inclination angle
is observed. Recently, Chrust et al. (2015) conducted both numerical and experimental
studies of the flow past an inclined disk of χ = 6 and ∞. The Re is up to 250 and
α reached 60◦. The effects of the inclination on the wake transition, mainly at Hopf
bifurcation, are discussed considering both extremely small inclinations (α < 2◦) and
large inclinations (α > 4◦). A relatively poor agreement between vortex shedding
frequencies is observed for numerical and experimental results, which is attributed
to the confinement of the experiments and the methods for supporting the disks.
Tian et al. (2017a) conducted a direct numerical simulation (DNS) study of the flow
behind an inclined disk of χ = 50. At Re = 500 (disk diameter based), the disk
is inclined by six inclination angles over the range of [0◦, 60◦] and four types of
flow patterns are categorized according to the lift coefficients, pressure coefficients,
three-dimensional vortical structures, etc. In aerodynamics, flow past low-aspect-ratio
wings with some angles of attack at low Reynolds number has been investigated to
explore the lift experienced by geometries or the rich dynamics provided by separated
flow (Dickinson & Gotz 1993; Dong, Mittal & Najjar 2006; Taira & Colonius 2009).
Compared with normal rectangular wings, some semicircular/elliptical wings which
have a curved leading edge appear to give rise to gentler wake under the same
flow configuration. Surprisingly, these foils experience similar lift force which is
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Flow around an inclined circular disk 691

most likely due to the viscous nature of the flows at low Reynolds number (Taira &
Colonius 2009).

Even though extensive research regarding disks has been performed to date, several
factors still require further elucidation. For example: (i) what is the wake transition
behind an inclined disk? (ii) How many types of flow regimes exist? (iii) How do
these regimes distribute and where are the thresholds between them? (iv) How does
inclination influence the wake of a circular disk? (v) Are there any connections
between fixed inclined disks and freely moving disks? Therefore, it is necessary to
conduct a comprehensive parametric study in the Re–α space, which is expected to
provide answers to these questions.

Driven by these motivations, DNS investigations are performed to reveal the
fundamental physical issues behind this problem. In such studies, numerical methods
are preferable to experimental ones, as ideal conditions (e.g. precise inclination
angles and perfect flow conditions) can be more easily achieved and problems with
supporting structures for the disk can be avoided. In the present study, the range
of Re is considered as 50–300 since it is wide enough for a thin disk at α = 0◦
to experience the whole process from steady to chaotic state. Moreover, in our
preliminary tests, when α increases to 80◦ at Re= 300, flow behind disk experiences
another transitional process from chaotic to steady state and α = 80◦ is high enough
for the flow to remain steady in the whole range [0, 300] of Re. Consequently, the
ranges of Re and α are confirmed. In this proposed Re–α domain, all the main
bifurcations for low Reynolds number flow around inclined disk are expected to be
found. Even though an infinitely thin disk is considered appropriate for fundamental
theoretical studies, the disk with χ = 50 is a more realistic situation worthy of
discussion and allows for the possibility of the results being experimentally validated
in the future.

The remainder of the paper is organized as follows. Details of numerical simulations
are described in § 2. The results are presented in § 3 with conclusion and discussion
being provided in § 4.

2. Numerical simulations
2.1. Mathematical formulations and numerical methods

We consider a fixed circular disk, where its axis is inclined by α with respect to the
uniform flow direction. The flow of an unsteady incompressible fluid is governed by
the Navier–Stokes (N–S) equations, which are solved here in the Cartesian coordinate
system (x, y, z). These coordinates could be uniformly denoted as xi, where i= 1, 2, 3
and ui is the velocity component of the corresponding direction. The N–S equations
are expressed as:

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=−

1
ρ

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
, (2.2)

where j= 1, 2, 3, p is the pressure and ρ is the density of the fluid. For clarity, the
velocity components u1, u2 and u3 are also denoted by ux, uy and uz, respectively.

These equations are discretized using the finite volume method (FVM) based on the
open source computational fluid dynamics (CFD) code OpenFOAM. OpenFOAM is an
object-oriented code, which enables the operation and manipulation of tensorial data to
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Disk

Disk
Disk

Outlet

Inlet
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FIGURE 2. Fixed inclined disk: schematic diagrams of the computational domain and grid
of the mesh. (a) Overall view of the spherical computational domain and the boundaries.
The outlet boundary is located at the downstream of the disk and the inlet boundary covers
the rest of the surface. (b) View of the grid structures in the plane z/D= 0. (c) A detailed
view of the grids near the disk surface.

solve continuum mechanics problems (Weller et al. 1998). The pressure implicit with
splitting of operators (PISO) scheme (pisoFoam) is used in our numerical simulations.
The discretization of each term is undertaken by integrating the term over a control
volume using Gauss’s theorem, and then volume and surface integrals are linearized
using suitable schemes. The spatial schemes of interpolation, gradient, Laplacian and
divergence are all linear and of second order. An additional correction is performed
for the Laplacian term by interpolating cell centre gradients. The second-order Crank–
Nicholson scheme is introduced for the time integration. Further detailed information
of these schemes was presented previously in OpenFOAM (2009). The present code
has been validated by our previous simulations (see, e.g. Yang, Tian & Li 2014b; Tian
et al. 2017a,b).

As shown in figure 2(a), a spherical computational domain is applied for the
numerical simulations. The origin of the Cartesian coordinate system (x, y, z) is
located at the centre of the disk, which is also the centre of the computational
domain. The radius of the computational domain is denoted as Rd. The boundary
conditions on the disk surface are no slip and impermeability for the velocity and a
zero normal gradient for the pressure. At the inlet boundary, a uniform flow (U∞,0,0)
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Flow around an inclined circular disk 693

and a zero normal gradient pressure are set. At the outlet boundary, the velocity is set
to a zero normal gradient and the pressure is set to zero. The whole computational
domain is discretized with hexahedral elements, and a non-uniform grid distribution
is used. Mesh is refined near the edge of the disk to better resolve the flow around
it. Such a method has been widely applied and verified in the literature (Shenoy &
Kleinstreuer 2008; Auguste et al. 2010; Chrust et al. 2015). In order to simulate the
flow past the disk inclined with different α values, the entire domain is rotated with
the disk together by the same angle. Thus, a good mesh quality could be achieved
conveniently for all simulations.

The non-dimensional force coefficients in three directions are defined as follows:

(Cx,Cy,Cz)=
(Fx, Fy, Fz)
1
8ρU2

∞
πD2

, (2.3)

where Fx, Fy and Fz are the force components imposed on the disk in the x, y and z
directions, respectively, which are directly calculated by integrating the pressure and
viscous shear stress over the disk surfaces.

For the sake of the coherence with the definition of Re, the Strouhal number is non-
dimensionalized by the short axis of projection in the streamwise direction as follows:

St=
fD cos α

U∞
, (2.4)

where f is the frequency.
The vorticity component in the streamwise direction is defined as:

ωx =
∂uz

∂y
−
∂uy

∂z
. (2.5)

2.2. Convergence studies
Convergence studies for evaluating the effects of spatial and time resolutions on the
numerical simulations are performed for three cases with different number of grid
elements and time steps, i.e. cases A, B, C in table 1. In each case, five typical
flow configurations distributed evenly in the considered space are chosen for the
comparison. (Re, α)= (130, 45◦) and (240, 30◦) are on or near thresholds; (175, 35◦)
and (250, 60◦) are in the middle of the map; (300, 15◦) is in the turbulent regime.
One should note that for all the flow configurations, the results of 〈Cx〉 and 〈Cy〉

from these cases show good agreement, indicating a good convergence for the spatial
and temporal resolutions. The effects of the size of the computational domain on the
numerical results are evaluated using a smaller spherical domain with Rd = 20D (case
D in table 1). Case D has a similar spatial resolution and the same time step as in
case B. The results obtained from case D agree well with those from cases B and
C, indicating that a spherical computational domain of Rd = 20D is large enough to
eliminate the influence of the outer boundary. Moreover, the time traces of ux/U∞
for these flow configurations are shown in figure 3. Very good agreement is obtained
from the results of cases A, B, C and D again. For all the numerical simulations
reported in the following sections, the conditions for case B, i.e. 1 049 600 grid
elements, a time step of 1tU∞/D= 0.002, and a computational domain of Rd = 30D
are used.
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FIGURE 3. (Colour online) Comparison of the time traces of dimensionless axial velocity
ux/U∞ at the point of x = 1, y = z = 0 for four cases at (Re, α) = (a) (130, 45◦);
(b) (175, 35◦); (c) (240, 30◦) and (d) (250, 60◦). When the disk is inclined by α = 15◦
at Re= 300, the flow shows a chaotic state; hence, the time traces could not be shown
for comparison.

Case Elements n1/D Rd 1tU∞/D (130,45) (175,35) (240,30) (250,60) (300,15)

〈Cx〉

A 783 480 0.0030 30D 0.0025 0.823 0.993 1.029 0.480 1.106
B 1049 600 0.0027 30D 0.0020 0.822 0.993 1.034 0.480 1.127
C 1347 552 0.0025 30D 0.0015 0.821 0.992 1.036 0.479 1.126
D 942 080 0.0027 20D 0.0020 0.822 0.994 1.034 0.480 1.120

〈Cy〉

A 783 480 0.0030 30D 0.0025 0.673 0.612 0.540 0.655 0.280
B 1049 600 0.0027 30D 0.0020 0.673 0.613 0.544 0.655 0.284
C 1347 552 0.0025 30D 0.0015 0.670 0.609 0.545 0.653 0.282
D 942 080 0.0027 20D 0.0020 0.672 0.614 0.544 0.655 0.282

TABLE 1. Mean values of the force coefficients 〈Cx〉 and 〈Cy〉 of five flow configurations
(Re, α) obtained via four cases with different spatial and temporal resolutions. n1 is the
size of the smallest cells near the disk surface and 1t is the time step.

2.3. Code validation

To examine the validity of our numerical method, the results of a well-documented
flow configuration, i.e. a circular disk normal to the flow, are presented here and
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compared with results presented in the literature. For a circular disk of χ = 50,
the transition scenarios show a total of five bifurcations from a steady flow to a
completely chaotic state. Figure 4 demonstrates representative images of these states.
Figure 4(a) shows the axial vorticity iso-surfaces after the primary bifurcation. The
double-threaded wake illustrates that the flow is in a steady and reflectional symmetry
state (cf. figure 4 in Shenoy & Kleinstreuer 2008). Note that the symmetry plane,
which is arbitrarily oriented at approximately 72◦ to the y-axis, is observed in our
simulation. After the Hopf bifurcation, the loss of the symmetry plane (RSB mode) is
indicated by the totally three-dimensional axial vorticity iso-surfaces (see figure 4b).
The orientation of the lift force oscillates around 72.6◦, which is the same plane
selected as the primary bifurcation. The Cz–Cy diagram also shows the lift force
oscillating along a closed path about a mean direction (cf. figure 4 in Auguste et al.
2010). At the third bifurcation, as shown in figure 4(c), the reflectional symmetry is
recovered. The Cz–Cy diagram indicates that the lift force remained in the symmetry
plane of the flow and is oscillating around a mean value of zero. The Cx–Cy diagram
shows a closed-path butterfly-like attractor, which implies that the periodicity of the
flow and the frequency of the lift force is half that of the drag force (similar to figure
5 in Auguste et al. 2010). As shown in figure 4(d), a low frequency component occurs
at Stl= 0.034, which is approximately one third of the primary frequency (St= 0.114)
in the previous state (Chrust et al. 2010; Auguste et al. 2010). The Cx–Cy diagram
maintains the shape of a butterfly-like attractor, but no longer shows a single loop;
this is typical of a quasi-periodic system (cf. figure 8a in Auguste et al. 2010).
Finally, both the periodicity and the symmetry plane are lost when the flow became
chaotic (figure 4e). This validation process provides a clear conclusion regarding the
transition scenarios of a circular disk of χ = 50 placed normal to the incoming flow.
These states and their most important characteristics agreed well with the results
of previous studies. The critical Reynolds number and Strouhal number at different
bifurcations are listed and compared in table 2. Our results are well located within the
range between χ =∞ and χ = 10 published previously (Chrust et al. 2010). Based
on the good agreement obtained, it is concluded that the present numerical approach
is able to provide reliable results for the flow around an inclined disk. Validation
of this method with experimental results (Calvert 1967) has also been previously
reported (Tian et al. 2017a).

3. Results

In the present study, numerical simulations are conducted for 318 pairs of (Re, α),
which are represented by the symbols shown in figure 5. After careful examinations,
five flow regimes in the considered parametric space are observed and denoted as:
steady state (SS), periodic state (PS), periodic state with a low frequency modulation
(PSL), quasi-periodic state (QP) and chaotic state (CS). The thresholds between
different regimes are identified by the solid lines. The Hopf threshold is obtained by
the linear interpolation of force coefficients amplitude amplification/decay rates near
it. The technical details could be found in Tian et al. (2017b). Although it is difficult
to determine other boundaries accurately, careful examination is conducted to classify
the cases by typical characteristics belonging to different regimes, e.g. non-coincident
Cx–Cy parametric plot in the QP area; loss of reflectional symmetry in the CS area;
frequency peak band in the PSL area. Based on extensive simulations, the error
margin of these boundaries is less than 2 in Reynolds number at the same α. Note
that the bifurcations sequence at α = 0◦ is still observed when the disk is inclined.
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FIGURE 4. (Colour online) Sample characterization of wake transition scenarios of a thin
circular disk (χ = 50) placed normal to the flow. (a) Steady and reflectional symmetry
(after the primary regular bifurcation), Re=125. (b) Periodic without reflectional symmetry
or RSB (after the Hopf bifurcation), Re = 130. The lift force oscillates around the
plane selected by the primary bifurcation. θ is defined by the direction of the lift
force with respect to the y-axis. (c) Periodic with recovered reflectional symmetry,
Re= 141.5. Cyz is the lift force coefficient. (d) Quasi-periodic, Re= 210. A low frequency
component is observed. (e) Chaotic state, Re= 220. The three-dimensional plots represent
the iso-surfaces of a pair of equal magnitudes of positive and negative axial vorticity ωx
(±0.1U∞/D), indicated by the red and blue surfaces, respectively. The force coefficients
for all parametric diagrams in the present study are plotted by more than ten whole
periods.
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χ Rec1 Rec2 Rec3 Rec4 Rec5

St2 St3

∞ (Fabre et al. 2008) ≈115 ≈121 ≈140
0.119

∞ (Meliga et al. 2009) 116.9 125.3 143.7
0.121

∞ (Chrust et al. 2010) 116.92 (124, 125.2) [142, 143] [165, 170]
0.120 0.118

50 (Present) 120.5 [128.5, 130] [140, 141.5] [185, 190] [210, 215]
0.121 0.114

10 (Chrust et al. 2010) 129.6 (136.3, 138.7) 154.4 188.8
0.115 0.114

10 (Shenoy & Kleinstreuer 2008) 135 155 172 280
0.113

TABLE 2. Critical Reynolds number and Strouhal number at different bifurcations. The
results for thin disks are listed in the table so that Rec1, Rec2 and Rec3 are the onsets
of the SS, RSB and SW states respectively for all cases. Note that Chrust et al. (2010)
and Shenoy & Kleinstreuer (2008) did not define a threshold between the quasi-periodic
state and chaotic state. Although the threshold between the quasi-periodic state and chaotic
state is still difficult to find here, we propose that this bifurcation is at Rec5 based on our
extensive numerical simulations. At Rec4, where the flow begins to lose its periodicity, our
results show good agreement with previous studies (Chrust et al. 2010). The parentheses
denote the bistability interval and the square brackets correspond to the mean error margin.

The inclinations tend to first promote the thresholds and then delay them. Any tiny
inclination changes the perfect axisymmetric flow configuration into a configuration of
planar symmetry, resulting in a fixed reflectional symmetry plane of the wake, i.e. the
plane of z/D= 0 for all states, except the two blue regions in figure 5. One is located
in the PS state area, which is well above the RSB state (Re≈ 130–140, α = 0◦) but
only appears when α is smaller than 4◦. Here, a non-zero mean lift always emerges
in the direction perpendicular to the plane of symmetry selected by the inclination.
This phenomenon with respect to the weakly nonlinear model has been reported and
investigated in Chrust et al. (2015). Nevertheless, inclination recovers the reflectional
symmetry of wake when α > 4◦. The other one is the whole area of chaotic regime,
where the loss of reflectional symmetry is always conserved. In the following section,
we presented representative cases for each flow regime to illustrate the wake transition
behind a circular disk with varying Re and α and discuss the questions raised in § 1.

3.1. Regime I: steady state (SS)
As shown in table 2, when a thin circular disk of χ = 50 is placed normal to the
incoming flow, a regular bifurcation at Rec1 = 120.5 is observed prior to the second
Hopf bifurcation at 128.5<Rec2< 130; the wake changes from axisymmetry to planar
symmetry before becoming unsteady. As shown in figure 6, a small inclination of α=
1◦ already results in a new symmetry plane of z/D= 0 at Re= 100. Therefore, for the
inclined cases around the primary bifurcation, irrespective of the steady axisymmetric
flow or steady planar symmetric flow, any inclination results in a double-threaded and
counter-rotating axial vorticity (similar to figure 4 in Shenoy & Kleinstreuer 2008).
A steady and positive lift force in the y-axis direction appears for all cases in the
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FIGURE 5. (Colour online) Classification of flow regimes behind a fixed inclined disk
in the considered Re–α parametric space. I: steady state (SS),q; II: periodic state (PS),
×; III: periodic state with a low frequency modulation (PSL),u; IV: quasi-periodic state
(QP),r; and V: chaotic state (CS), +. Except the blue regions, the flow always shows a
fixed plane of symmetry selected by the inclination.
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FIGURE 6. (Colour online) Sample vortical structure in the SS state. The disk is inclined
by (a) α = 1◦; (b) α = 10◦ at Re= 100. Iso-surfaces of the axial vorticity ωx are of the
same magnitude (±0.1U∞/D) and are represented by red and blue surfaces, respectively.

SS state. The inclination as a perturbation introduced to the perfectly axisymmetric
system yields a planar symmetry flow pattern, which is found to be the exclusive flow
pattern below the boundary of Hopf instability. The primary bifurcation disappears. It
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Chrust et al. (2015) Present study
α (deg.) Rec Stp Rec Stp

0 125.2 0.120 130.0 0.121
10 114.3 0.111 114.8 0.110
20 96.4 0.124 99.7 0.123
30 95.3 0.148 95.6 0.145
40 104.9 0.183 107.3 0.177
50 132.6 0.226 154.2 0.223
60 — — 188.5 0.261

TABLE 3. Comparison of the critical Reynolds number Rec and Strouhal number
corresponding to the frequency of primary vortex shedding Stp on the Hopf threshold.
Rec and Stp are all normalized by the short axis of projection in the streamwise direction
D cos α to compare conveniently.

is worth mentioning that the imperfect configuration could strengthen the intensity of
the streamwise vortices (see figure 6), which is also reported by Chrust et al. (2015).

3.2. Regime II: periodic state (PS)
The first bifurcation of inclined disks is of Hopf type. It is numerically investigated
here up to Re = 300. As shown in table 3, the Rec and Stp show good agreement
with those previously published (Chrust et al. 2015) at α < 35◦, even though their
disk is infinitely thin. It is reasonable to believe that at small α the appearance
of the disk edge and thickness do not introduce significant effects, e.g. acting as
a strong source of vorticity like the tips of foils and wings or influencing the
critical Reynolds number, at least for thin bodies. As shown in figures 7 and 8, four
specific cases at Re = 175 in the PS state area are chosen as the samples. From
figures 7(a–d) and 8(a–d), the three-dimensional (3-D) vortical structure sketches and
Cz–Cy diagrams verify the aforementioned conclusion that the reflectional symmetry
of the wake with respect to the plane of z/D= 0 is always conserved in this regime.
Moreover, periodic vortex shedding is well demonstrated. With increasing α, the
wake flow of the inclined disk is oriented towards the trailing side rather than the
streamwise direction and the wavelengths decrease. Considering the Cx–Cy diagrams
shown in figures 7(e–f ) and 8(e–f ), although the loops have different shapes, a single
closed loop is formed, indicating the periodicity of the flow. With increasing α,
the previous primary frequency of Cx (solid black line) gradually gives way to a
new dominant frequency until these two force coefficients share the same dominant
frequency; this process can be seen in figure 7(g–h). Then, the dominant frequency
is always identical for the drag and lift force (see figure 8g–h). If α keeps growing,
the magnitude of the higher harmonics recesses gradually until the flow becomes
perfectly harmonic near the boundary of the SS state, as shown in figure 8(h).

The streamlines behind the disk could further explain these phenomena from the
prospective of vortex shedding patterns. Behind an inclined circular disk, there are
two toroidal vortices generated from the leading and trailing edges, respectively. As
shown in figure 9, the two toroidal vortices alternatively grow or shrink to feed
each other and the downstream wake, resulting in a periodic flow. To be specific,
as the lower vortex grows and sheds (figure 9a–d), the upper one shrinks to feed it
until approaching a local shortest length at figure 9(d). Then the upper one grows at
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FIGURE 7. (Colour online) Part I: sample characterizations of PS state. The disk is
inclined by α = 10◦ (left column); α = 30◦ (right column) at Re = 175. (cf. part II in
figure 8). (a,b) ωx iso-surfaces are shown at the level of ±0.1U∞/D. (c,d) Cz–Cy diagrams
indicate the reflectional symmetry of the wake. (e, f ) Cx–Cy diagrams imply the periodicity
of the force coefficients. (g,h) Power spectra density (PSD) of Cx and Cy. One dominating
frequency, corresponding to the vortex shedding frequency, and its higher harmonics are
observed, further indicating the periodicity of the force coefficients.
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FIGURE 8. (Colour online) Part II: sample characterizations of PS state. The disk is
inclined by α = 40◦ (left column); α = 52◦ (right column) at Re = 175. It can be seen
that the reflectional symmetry and periodicity of the force coefficients are conserved over
the whole regime. The Strouhal number Stp goes up with the increase of α, while the
amplitudes of higher harmonics recess.

rapidly increasing speed until a local largest length at figure 9( f ) (see movie 1 in
the supplementary animations at https://doi.org/10.1017/jfm.2018.526). This process is
similar to the wake behind a circular disk of χ = 5 normal to the flow at Re= 300
(Yang et al. 2015). Instead of developing arbitrarily at α = 0◦, the flow behind
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FIGURE 9. (Colour online) Instantaneous streamlines in the plane of z/D = 0 at Re =
150 when the disk is inclined by α = 20◦ (PS state). Six sketches happen successively
throughout a whole period equal to 1/fD/U∞. The diameter of the upper toroidal vortex,
which is defined by the distance from the disk centre to the end of upper recirculation
region, has been labelled in each plot.

inclined disk is regulated and the periodic vortex shedding is promoted so that at the
same Reynolds number the wake is more likely to become periodic. Consequently, the
threshold corresponding to steady-state–periodic-state transition (the section of α< 30◦)
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FIGURE 10. (Colour online) Strouhal number Stp as a function of Reynolds number for
different inclination angles α. The results of our study (black markers) are compared to
those from a previous one (Chrust et al. 2015) (red markers). Stp is normalized by D cosα
for comparison. When the disk is inclined by α= 40◦; α= 50◦ at Re> 230, the cases are
located in the PSL state area, where the dominant frequency shows a wide band rather
than a single peak. Therefore, Stp are represented by error bars to delimit the errors.

is advanced. When α increases, the upper toroidal vortex almost stops growing
and shrinking, instead, it remains stable at the disk surface, leaving only the lower
one shedding periodically (see movie 2 in the supplementary animations). Similar
phenomenon had been reported in aerodynamics that the leading edge vortices are
found to be stably attached and provide lift force for fixed, flapping or hovering
wings at some angles of attack (Dong et al. 2006; Taira & Colonius 2009). It is
found that the larger Re is, the larger α is required to make upper toroidal vortex
remain stable. As a result, the threshold of Hopf bifurcation corresponding to the
periodic-state–steady-state transition (α > 30◦) is also delayed.

Strouhal number obtained from extensive cases is illustrated here. As shown in
figure 10, our results are in very good agreement with previous DNS data for α= 10◦,
20◦ and 30◦. When α is constant, the Stp increases slightly with increasing Re. And
the Strouhal number is independent of Re in the chaotic regime (corresponding to
the cases of Re > 240 when the disk is inclined by α = 10◦, 20◦ and 30◦) (Chrust
et al. 2015). However, for a given Reynolds number, Stp increases significantly with
increasing α.

3.3. Regime III: periodic state with a low frequency modulation (PSL)
In the considered Re–α space, a unique flow regime with intermediate α range
(approximately 30◦–55◦) is observed when Re is larger than 195. Besides the periodic
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FIGURE 11. (Colour online) Sample characterizations of the PSL state. The disk is
inclined by α= 50◦ at Re= 250. (a) ωx iso-surfaces are all demonstrated for ±0.1U∞/D.
Reflectional symmetry is observed. (b) Time traces of the force coefficients, Cx and
Cy. It is observed that periodic vortex shedding is associated with a low frequency
modulation. (c) Cz–Cy diagram indicating reflectional symmetry of the wake. (d) Cx–Cy
diagram shows a complicated pattern, indicating complex frequency components of the
force coefficients. (e) PSD of Cx and Cy. The low frequency modulation and frequency
bands (with harmonics) are all obtained.

vortex shedding, another pronounced low frequency is also observed. Similar flow
pattern is reported for flow past a disk inclined by 45◦ and 50◦ at Re = 500 (Tian
et al. 2017a). This state inherits the key features of the PS state, while the flow is
modulated by a low frequency component; therefore, it is named the ‘periodic state
with a low frequency modulation’ (PSL). Several main features of the PSL state are
shown in figure 11. From the 3-D vortical structure and Cz–Cy diagram, the flow
shows reflectional symmetry and a double-threaded vortex with periodic shedding is
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FIGURE 12. (Colour online) Time dependency of (a,b) pressure coefficient Cp; (c,d)
dimensionless axial velocity ux/U∞. The disk is inclined by α = 50◦ at Re = 250. One
should note that (a,c) demonstrate the line of x/D = 1, y/D = 0, cf. (b,d) the line of
x/D = 2, y/D = 0. The pressure coefficient Cp is defined as Cp = (p − p∞)/(0.5ρU2

∞
),

where p∞ is the reference pressure at the centre of the inlet boundary. Low frequency
oscillations are observed in the sketches at different downstream locations.

observed, generated only from the trailing edge. Figure 11(b) clearly presents this low
frequency modulation, whose period is significantly longer than that of the primary
vortex shedding. As shown in figure 12, the primary frequency modulated by a low
frequency is again clearly observed in the pressure and velocity fields at various
downstream locations.
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Recalling the validation work that when the flow behind disk begins to lose the
plane of symmetry and enters the quasi-periodic regime at Re≈ 190, a low frequency
at St = 0.034 is observed. Previous studies attributed this to the irregular rotation
of the azimuthal location of large-scale vortex shedding (Tomboulides & Orszag
2000; Shenoy & Kleinstreuer 2008) and the low frequency pumping motion of the
recirculation region (Berger et al. 1990). It is further reported that these two physical
origins resulted in different low frequencies at St = 0.02 and St = 0.03 (χ = 5,
Re = 300) (Yang et al. 2015). Here, the low frequency at Stl ≈ 0.026 is obtained
in the PSL state (figure 11e); the primary vortex shedding frequency and its higher
harmonics are also clear, appearing as a wide frequency band rather than a single
well-defined peak. It is noted that the low frequency is much more pronounced in the
PSL state than the QP state (cf. figure 4d). Moreover, Stl is only approximately one
tenth to the Stp while this ratio is approximately one fourth in the QP state. Both
periodic vortex shedding and a similar pumping motion over a much longer time
scale are observed in the 3-D visualization of the vortical structure (see movie 3 in
the supplementary animations). However, the pumping motion in the PSL state shows
some differences. As shown in figure 13, the vortex on the trailing edge continues
to shed and gives rise to the main oscillation. Nevertheless, the toroidal vortex on
the leading edge neither grows and shrinks periodically with the trailing edge one
nor stably attaches to the disk. Instead, it presents a similar low frequency pumping
motion alone. Specifically, in figure 13(a–c), when the lower toroidal vortex keeps
growing, the upper one also grows. This process is in contrast to the process in the
PS state (cf. figure 9), implying that the pumping motion of the upper toroidal vortex
is independent of the primary vortex shedding. It is most likely the intermediate α
range of PSL state gives rise to an intermediate motion status of leading edge vortex.
This type of motion is different from the previously reported pumping motion, which
is provided by the leading and trailing edges together. It is reasonable to believe
such a difference leads to the aforementioned discrepancy in the amplitude of low
frequency and the ratio value of Stl/Stp.

3.4. Regime IV: quasi-periodic state (QP)
Before flow behind a perpendicularly placed disk develops into a chaotic state, a state
of quasi-periodicity pioneers. When the disk is inclined, this QP state is conserved for
small inclination area (α is approximately less than 30◦). As shown in figure 4(c), the
plane of symmetry is arbitrary, but stable at Re= 210 when the disk is placed normal
to the flow. Once it is inclined by α= 1◦, the reflectional symmetry of the wake with
respect to the plane of z/D= 0 is immediately recovered and conserved in the whole
regime (see figure 14c,d). This is the same behaviour as that happening at the primary
bifurcation. A low frequency component of Stl≈ 0.027 is also observed when the disk
is inclined by α = 1◦, and the ratio of Stl to Stp is also approximately 1/4, implying
the same physics (see figure 14g). When α increases, this ratio develops towards a
1 : 2 ‘lock-in’ state with a primary frequency as shown in figure 14(h). Almost perfect
ratio and phase locking resulted in the single loop observed in the Cx–Cy diagram
(see figure 14f ). A similar phenomenon was previously reported (see figure 8b in
Auguste et al. 2010) where the flow returned to a periodic state at Re = 230 after
chaotic behaviour was observed at Re = 220. After examination of the 3-D plot of
the vortical structures of the QP state (see movie 4 in the supplementary animations),
it is reasonable to believe that this low frequency is also attributed to the pumping
motion of the leading and trailing edges vortices together, the same physics occurring
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FIGURE 13. (Colour online) Instantaneous streamlines in the plane of z/D = 0 at six
successive time instants. The disk is inclined by α = 50◦ at Re= 250 (PSL state). Note
that the upper toroidal vortex oscillates independently of the periodic shedding, i.e. neither
grows and shrinks with the lower one (cf. figure 9) nor remains stable.

at α = 0◦ and 1◦. Inclination selects the plane of symmetry for the wake, regulates
the flow and induces the periodic vortex shedding behind the disk, consequently the
Hopf threshold is advanced in the PS state. Similarly, in QP state the pumping of
recirculation region is also stimulated, intensified and forced to move in resonance
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FIGURE 14. (Colour online) Sample characterizations of the QP state. The disk is inclined
by α = 1◦ (left column); α = 20◦ (right column) at Re= 210. When α = 0◦, the plane of
symmetry is arbitrary (see figure 4d). At α= 1◦, the reflectional symmetry of the wake is
immediately recovered and conserved. Quasi-periodic features are observed in the Cx–Cy
diagram and PSD.

with the periodic vortex shedding. However, this exact 1:2 ‘lock in’ does not last long
and the low frequency amplitude significantly decreases when α keeps increasing to
the threshold of the PS state. Over this boundary, only the primary vortex shedding
frequency and its harmonics leave, implying a periodic flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

52
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

ha
ng

ha
i J

ia
oT

on
g 

U
ni

ve
rs

ity
, o

n 
31

 Ju
l 2

01
8 

at
 1

5:
29

:0
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.526
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Flow around an inclined circular disk 709

–2
0

2
4

6
8

10
12

14

–2
0

2
4

6
8

10
12

14

–2
0

2
4

6
8

10
12

14

1

–1
0

1

–1
0

1

–1
0

–1

0

1

–1

0

1

–1

0

1

(a)

(b)

(c)

FIGURE 15. (Colour online) Vortical structures identified using ωx=±0.1U∞/D. The disk
is inclined by (a) α= 0◦; (b) α= 1◦; (c) α= 30◦ at Re= 300. Irregular wake is observed
for all three cases. Nevertheless, with increasing α, the flow is regulated and reflectional
symmetry with respect to the z/D= 0 plane emerged gradually.

3.5. Regime V: chaotic state (CS)
For a circular disk placed perpendicularly to the incoming flow, both the periodicity
and reflectional symmetry of the wake disappear at the threshold of chaos, which is
at Rec5 = [210, 215] here (see table 2). As shown in figure 15, the flow is always
chaotic irrespective of the inclination angle, meaning that the bifurcation always takes
a dominant position to control the flow in the CS state area; hence, no magnitude of
inclination can recover the reflectional symmetry. As shown in figure 16(a,c,e), force
coefficients all present irregular traces as well. Nevertheless, when α grows to 30◦,
Cz explores a much narrower range, implying that inclination still has some effect
on the flow in this state. The vortices evolve chaotically along both the y-axis and
z-axis when the disk is inclined by α = 0◦ and 1◦, and the amplitudes of Cy and Cz

are comparable in figure 16(a,c), showing a combined effect. Even though vortices
are still irregular when disk is inclined by α = 30◦, their attachment orientation
remains fixed. The irregular oscillation of Cz is much more significant than that of
Cy, which is attributed to the large inclination angle. This phenomenon can be further
confirmed by the irregular azimuthal motion of the vortex shedding. As shown in
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FIGURE 16. (Colour online) Instantaneous force coefficients (a,c,e) and temporal evolution
of the vortex shedding location (b,d, f ) when the disk is inclined by (a,b) α = 0◦; (c,d)
α= 1◦; (e, f ) α= 30◦ at Re= 300. The grey dashed line of C′y–C′z is the time-independent
projection of the black solid time trace of Cy–Cz. The blue and red lines are the time
traces of Cz and Cy, respectively. The radius of the polar contour is dimensionless time
while the polar angle is the azimuthal location of the vortex shedding, which is determined
by the orientation of the lateral force (projected onto the disk surface) with respect to the
y-axis (Shenoy & Kleinstreuer 2008). The direction of the y-axis is represented by the
0-tick in the polar contour. The rotation of the vortex shedding location appears as an
azimuthal expansion from the origin.
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figure 16(b), continuous rotation of the vortex shedding is observed when α = 0◦
(similar to figure 11(b) in Shenoy & Kleinstreuer 2008). The rotation arbitrarily
changes direction and shows complete rotation around the circumference. When
α = 1◦, although the vortex shedding is still rotating, it is limited to a narrow range,
and the rotation oscillates around a plane of symmetry (see figure 16d). When the
disk is inclined by α = 30◦ (figure 16f ), the flow is restrained to rotate around the
plane of z/D= 0 within ±3◦, which is apparently determined by the inclination. We
conclude that, in the turbulent regime, the inclination has some control over the wake
as well, although the bifurcation is always dominant.

3.6. Wake instability of the fixed inclined disk and the freely falling disk
Zhong & Lee (2012) experimentally investigated the wake behind a thin disk (χ > 40)
falling vertically in quiescent water at low Reynolds numbers. In their study, the disk
is falling in a rectilinear path with no significant rotation of the body (corresponding
to the SV state), i.e. I∗ is not important in describing the motion of the disk and Re
is the only control parameter. Under such circumstances, the wake also experience a
series of bifurcating transitions, and is similar to the evolution of the wake behind
a fixed disk: the transition from an axisymmetric wake to the SS state at the first
regular bifurcation (Rec1≈ 105) and then the Hopf bifurcation occurred at Rec2≈ 118,
leading to the RSB mode. Although these critical Reynolds numbers are both slightly
smaller than those obtained in the present study, the transition and vortex shedding
patterns indicated the similarity between them. Furthermore, when the disk is inclined,
the bifurcations will be advanced so that the discrepancy further decreased, indicating
more reasonable connections between a barely rotating freely falling disk and a fixed
inclined disk. However, this is not to say that the mechanism of the freely falling disk
can be considered as that of a fixed inclined disk.

In discovering the connections between the fixed inclined disk and fully rotating
freely falling disk (e.g. ZZ or AR states), even though we could easily find
counterparts with similar χ and Re values in the literature, it is difficult to properly
bring inertial effects into the discussion. Here, the flow pattern of the PS state is
similar to that of the ZZ mode of the freely falling disk, which shows a planar
path with periodic oscillations where α never exceeds π/2 (Field et al. 1997; Chrust
et al. 2013); the axial vorticity iso-surface also indicates a pair of vortices shedding
in opposite orientations (see figure 7 in Chrust et al. 2013). It is more reasonable
that the inertia of the fixed disk should be infinite, while the ZZ mode is extremely
suppressed in the high I∗ area of the parametric diagram (see figure 2 in Auguste et al.
2013). Moreover, Fernandes et al. (2007) reported that translational and rotational
degrees of freedom of thin moving bodies can delay the onset of instability when
comparing with the critical Reynolds number of Hopf bifurcation for a disk placed
normal to the flow. And this discrepancy would be more significant for an inclined
disk. We regretfully draw the conclusion that the SV–ZZ transition of a freely falling
disk is fundamentally different from the steady-state–periodic-state transition of fixed
one. The transition of the fixed inclined disk is only similar to that in the SV regime,
which does not involve significant disk–ambient fluid couplings.

4. Conclusion and discussion
Here, the flow around an inclined circular disk is extensively investigated by direct

numerical simulations and the transition scenarios in the Re–α parametric space are
exhaustively discussed. In the considered Re–α space, five states are observed and
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denoted as: steady state (SS), periodic state (PS), periodic state with a low frequency
modulation (PSL), quasi-periodic state (QP) and chaotic state (CS).

The Reynolds number and inclination angle are the two control parameters studied
here, and the effects of the Reynolds number and inclination on the bifurcation
mechanism are discussed. It is evident that a slight break in the perfectly axisymmetric
geometry results in a significant change in the flow past the disk. The variation of
Re gives rise to bifurcations while α plays a role in modifying the wake patterns, e.g.
selecting the plane of reflectional symmetry, changing the frequency of primary vortex
shedding and controlling the vortex shedding mechanism. On one hand, Re is always
dominant in the transition from the steady to unsteady state and eventually the chaotic
state. As shown in figure 5, if the viewpoint rolls along the axis of Re, a sequence
of bifurcations at α = 0◦ is always observed, despite being advanced or delayed at
different α values. On the other hand, inclination also plays a dominant role under
some conditions, e.g. selecting a fixed and stable plane of reflectional symmetry for
the wake over the entire Re–α space (not observed in the blue regions). Inclination
breaks the perfect axisymmetric configuration, and therefore it regulates the wake
instead of letting it develops arbitrarily. This influence is especially significant for
small inclinations where periodic vortex shedding and the low frequency pumping
motion of the recirculation region are stimulated and promoted; the thresholds are
advanced. However, at the onset of the RSB mode (a weakly unstable state) Hopf
bifurcation is dominant for small inclination angles (≈4◦) so that the reflectional
symmetry could not recover with changing inclination. In the chaotic state, although
large inclinations even fail to do so, inclinations also regulate the chaotic motion
of the wake. From the perspective of the vortex shedding mechanism, apart from
the SS state, for flow behind a slightly inclined circular disk, vortex shedding
occurs alternatively on the leading edge and trailing edge. When the inclination
angle increases, only the vortex from the trailing edge continues to shed, while the
toroidal vortex on the leading edge shows a kind of pumping motion modulated at
a low frequency. This motion results in a low frequency modulation imposing on
the periodic vortex shedding, representing the PSL state. When the inclination angle
keeps going up, the upper recirculation bubble remains stable at the disk surfaces and
only the trailing edge one sheds. As a result, the periodic state is recovered, even
in a harmonic state. Finally, the flow becomes steady when the disk is inclined at a
sufficiently large angle, which increases with increasing Re; therefore, the threshold
of the periodic-state–steady-state transition is delayed.

Although the correlation between the wake instability of a fixed inclined disk and
that of a free falling one is also limited, the present study clarifies the relationship
between the fixed body and fluid–body coupled system; the inertial effects which are
closely associated with the coupling of the disk and ambient fluid are not relevant for
the fixed disk (inclined or not), so these two topics are fundamentally different.
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Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2018.526.
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